2 research outputs found

    Parameter estimation of electric power transformers using Coyote Optimization Algorithm with experimental verification

    Get PDF
    In this work, the Coyote Optimization Algorithm (COA) is implemented for estimating the parameters of single and three-phase power transformers. The estimation process is employed on the basis of the manufacturer's operation reports. The COA is assessed with the aid of the deviation between the actual and the estimated parameters as the main objective function. Further, the COA is compared with well-known optimization algorithms i.e. particle swarm and Jaya optimization algorithms. Moreover, experimental verifications are carried out on 4 kVA, 380/380 V, three-phase transformer and 1 kVA, 230/230 V, single-phase transformer. The obtained results prove the effectiveness and capability of the proposed COA. According to the obtained results, COA has the ability and stability to identify the accurate optimal parameters in case of both single phase and three phase transformers; thus accurate performance of the transformers is achieved. The estimated parameters using COA lead to the highest closeness to the experimental measured parameters that realizes the best agreements between the estimated parameters and the actual parameters compared with other optimization algorithms

    Hybrid optimization algorithm for parameter estimation of poly-phase induction motors with experimental verification

    No full text
    The estimated parameters accuracy of poly-phase induction motors is crucial for effective performance prediction and/or control in various manufacturing applications. This study investigates hybrid algorithm between particle swarm optimization and Jaya optimization algorithms for finding the optimal parameters estimation of poly-phase induction motors. It is carried out using the manufacturer's operation characteristics on two poly-phase induction motors. Numerical results show the capability of the proposed hybrid optimization algorithm. The proposed algorithm has competitive performance compared with conventional algorithms as well as with differential evolution and genetic algorithms. Experimental verifications are carried out on three-phase and six-phase induction motors. Also, it emulates the closeness between experimental and estimated parameters with fast convergence compared to other algorithms. Also, the results reflect the high robustness of the proposed algorithm compared with other algorithms for varied iteration numbers, population size and convergence
    corecore